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Abstract
Time evolution of wave packets on nanostructures is studied on the basis of a
three-dimensional solvable model with singular interactions (de Prunelé 1997
J. Phys. A: Math. Gen. 30 7831). In particular, methods and tools are provided
to determine time independent upper bounds for the overlap of the normalized
time-dependent wave packet with the time independent normalized wave packet
concentrated at an arbitrarily chosen vertex of the nanosystem. The set of upper
bounds referring to all initial positions of the wave packet and all overlaps
are summarized in a matrix. The analytical formulation allows a detailed
study for arbitrary geometrical configurations. Time evolution on truncated
quasicrystalline systems has been found to be site selective, depending on the
position of the initial wave packet.

PACS numbers: 02.30.−f, 03.65.Ge, 61.44.Br, 05.60.Gg

1. Introduction

Time evolution of a wave packet on a nanostructure is one aspect of the complex general
transport problem. For general overviews of transport problems, see e.g. [1, 2]. For some
recent work on wave packet time evolution, see e.g. [3–16]. References [4, 13, 14] are mainly
concerned with the revival of wave packets, [5, 8–10] with the time evolution of wave packets
in quasiperiodic or chaotic systems, [6, 7, 11, 12] with transport and tunelling phenomena.
Finally, [16] is concerned with wave packets in atomic systems, namely Rydberg atoms. This
paper is concerned with only one aspect of the general transport problem, the time evolution
of a wave packet according to the Schrödinger equation

ih̄
d|ψ〉

dt
= H |ψ〉 (1)

within the independent particle framework. Here |ψ〉 is a one-particle state in three-
dimensional space, and H is a time independent solvable Hamiltonian with singular interactions
described in the next section.

Although conceptually simple, this problem is practically difficult to solve in the sense
that it generally requires heavy numerical calculations. One is faced with a partial differential
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equation involving four variables, one for time, three for space. For an arbitrary geometric
configuration of the system described by the Hamiltonian H, there is no symmetry which allows
us to simplify the calculations, for example by separation of the variables. Therefore solvable
models are particularly helpful, especially for the study of the influence of the geometry of
the system and of initial conditions. The presently used model, which will be described in
section 2, solved in sections 3 and 4 and applied in section 5, demonstrates the importance
of the geometry for time evolution and clearly shows that non-intuitive interesting effects are
governed by the geometry only. In particular, the initial position of the wave packet plays
a crucial role for subsequent time evolution in quasiperiodic systems. We stress that the
geometric configuration of the system in three-dimensional space can be chosen at will in the
present model.

2. The Hamiltonian

The presently used model is the simplest case of a more general solvable model described in
detail in [17] and is therefore only briefly presented here with essentially the same notation as
in [17]. The Hamiltonian is

H = p2

2m
+

N∑
j=1

Vj . (2)

Atomic units (au) will be used. In configuration space, the operator p2 acts as minus the three-
dimensional Laplacian, − ∂2

∂x2 − ∂2

∂y2 − ∂2

∂z2 . The effective interaction at the centre characterized
by the vector position aj is a separable one:

Vj = λ|ξj 〉〈ξj | (3)
|ξj 〉 = exp(−iaj · p)r3/2|r, 0, 0〉 (4)

with |r, 0, 0〉 ≡ |r, � = 0,m = 0〉 an eigenvector of the squared orbital angular momentum
with eigenvalue �(� + 1) an eigenvector of the component Lz of the orbital angular momentum
with eigenvalue m (not to be confused with the mass in the kinetic energy term), and
a generalized eigenvector of the radial position operator with a generalized eigenvalue r,

normalized according to

〈r ′, 0, 0|r, 0, 0〉 = δ(r ′ − r)

r2
〈r′|r, 0, 0〉 = δ(r ′ − r)

r2

1√
4π

. (5)

All the eigenvalues are relative to an arbitrary fixed frame. The momentum operator is
denoted by p. The exponential term in equation (4) corresponds to a translation by a vector
displacement aj . The lower index (presently j ) corresponds to the position of the centre of the
interaction Vj . The set of centre positions {aj }, j = 1, . . . , N , is given, and will be referred
to as a given geometric configuration of the system. The symbol djk will be used to denote
the distance between centres j and k:

djk ≡ |aj − ak|.
The one-centre interaction (3) is thus a projector on the s partial wave relative to this

centre. This interaction depends on two parameters only, λ, r . The strength of the interaction
is characterized by λ, its range by r. For the case of an isolated centre, a bound state exists if
λ < −1/(2mr2).

The free resolvent G0(z) is defined by

G0(z) = 1

z − p2

2m
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3. Eigenvalues and eigenvectors of the Hamiltonian

From now on z will denote a negative real variable (and therefore G
†
0(z) = G0(z)), and the

purely imaginary number p with positive imaginary part will be related to z by z = p2

2m
.

The exact eigenvalues of H are the zeros of the determinant of a matrix b of order N with
respect to the variable z:

bij (z) = δij − λ(g0(z))ij (6)
(g0(z))ij ≡ 〈ξi |G0(z)|ξj 〉. (7)

The explicit expressions for the matrix elements of G0 are

if dji � 2r, (g0(z))ij = −2mr3p

(
sin(pr)

pr

)2 (
exp(ipdji)

pdji

)
(8)

if dji � 2r, (g0(z))ij = mr

djip2
[i exp(ip2r) sin(pdji) − exp(ipdji) + 1]. (9)

Equation (8) was derived in [17] and equation (9) can be obtained in a similar way by
contour integration in the complex plane and use of the residue theorem. It can be verified
that the two expressions coincide for dji = 2r , and that, in the limit dji → 0, equation (9)
gives the following expression for the diagonal matrix elements already obtained by direct
integration [17]:

(g0(z))jj = −2mr3p

(
exp(ipr)

pr

) (
sin(pr)

pr

)
. (10)

The exact normalized eigenvector of H corresponding to the eigenvalue zu is

|ψu〉 = G0(zu)
∑

i |ξi〉〈ξi |ψu〉√∑
j,k〈ψu|ξj 〉〈ξj |G2

0(zu)|ξk〉〈ξk|ψu〉
. (11)

The coefficients 〈ξi |ψu〉 appearing in the numerator and denominator are the elements of a
column eigenvector associated with the zero eigenvalue of the matrix b (zu). This matrix is
real symmetric (for z < 0), and therefore the 〈ξi |ψu〉 can all be chosen real, this choice being
made from now on.

The denominator of equation (11) can finally be computed from the following general
results which will be needed in section 4:

if djk � 2r, 〈ξj |G0(z2)G0 (z1) |ξk〉 = (2m)2r

djk(p2 + p1)

1

(p2 − p1)

×
[

sin2(p2r) exp(idjkp2)

p2
2

− sin2(p1r) exp(idjkp1)

p2
1

]
(12)

if djk � 2r, 〈ξj |G0(z2)G0(z1)|ξk〉 = 2m2 r

djk




1

p2
2p

2
1

+
1

(p2 + p1)(p2 − p1)

×




−i exp(ip22r)
sin(p2djk)

p2
2

+ i exp(ip12r)
sin(p1djk)

p2
1

+
exp(ip2djk)

p2
2

− exp(ip1djk)

p2
1







. (13)
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These results have been obtained by contour integration in the complex plane and the method
is briefly outlined in the appendix. It can be verified that the two expressions coincide for
dji = 2r , and that, in the limit dji → 0, equation (13) gives the following expression for the
diagonal matrix elements:

〈ξj |G0(z2)G0(z1)|ξj 〉 = −i
2m2r

p1 + p2

{
1

p1p2
+

1

p2 − p1

[
exp(i2p2r)

p2
− exp(i2p1r)

p1

] }
. (14)

The denominator of equation (11) involves 〈ξj |G2
0(zu)|ξk〉 and therefore the limit z2 → z1

in equations (12)–(14) has to be calculated. This limit corresponds essentially to derivation
operations for the right-hand sides, and one obtains

if djk � 2r, 〈ξj |G2
0(z)|ξk〉 = 2m2 r

djk

1

p4

× exp(ipdjk) sin(pr)[sin(pr)(idjkp − 2) + 2pr cos(pr)] (15)

if djk � 2r, 〈ξj |G2
0(z)|ξk〉 = 2m2 r

djk

1

p4

{
1 +

1

2
[exp(ip2r)((2i + 2pr) sin(pdjk)

− ipdjk cos(pdjk)) + (−2 + ipdjk) exp(ipdjk)]

}
(16)

〈ξj |G2
0(z)|ξj 〉 = 2(mr)2

p2
exp(ipr)

[
exp(ipr) − sin(pr)

pr

]
. (17)

Equations (15) and (17) correspond to equation (7) of [18] where they were obtained directly
by contour integration. The wavefunction in configuration space can then be obtained from
the explicit expression for 〈r|G0(z)|ξi〉 (see the equation below equation (7) of [18]),

〈r|G0(z)|ξi〉 = −mr3/2p√
π

exp(ipr>)

pr>

sin(pr<)

pr<

(18)

with r>, r< the largest and smallest values respectively, of the range r of the interaction and
the distance |r − ai | between the point where the wavefunction is computed and the centre ai .

Degeneracy may occur if the group of symmetry of the geometrical configuration has an
irreducible representation of dimension greater than unity. The orthonormality relations

〈ψu|ψv〉 = δuv (19)

are automatically verified provided zu �= zv , because eigenvectors of a Hermitian operator
associated with different eigenvalues are orthogonal. In the case of degeneracy, zu = zv , it is
assumed that orthogonalization has been achieved explicitly.

It has been shown [21] that the Hamiltonian H has at most N bound states |ψu〉. We stress
that the only numerical part for the determination of the eigenvalues is the computation of
the zeros of a determinant of a matrix of order N whose matrix elements are simple analytic
functions. Then the only numerical part for the determination of the eigenvectors and their
associated wavefunctions is the resolution of a system of linear equations of order N at most.
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4. Transport along the system

4.1. The initial state

For the construction of the initial state (at the beginning of the transport phenomenon), we
choose a state localized in the vicinity of a point ad , more specifically the normalized eigenstate
of the one-centre Hamiltonian h = p2

2m
+ Vd :

|χd〉 = G0(z0)|ξd〉√
〈ξd |G2

0(z0)|ξd〉
, (20)

where z0 is the negative eigenvalue of h. The position ad can be arbitrary, but will be chosen
to coincide with one of the centres of the nanosystem in the applications (see section 5).
Thus when the index d is an integer between 1 and N, the position ad coincides with a centre
aj (1 � j � N) of the nanosystem. We stress that the Hamiltonian (2) is a one-particle
Hamiltonian in three-dimensional space, with arbitrary geometry for the centres aj . An
arbitrary wave packet thus will not generally stay confined in the vicinity of the system but
part of it will escape to infinity. To ensure confinement within the system, we project the state
|χd〉 onto the subspace of negative eigenvalues of the Hamiltonian H of the total system. Our
initial state |ϕd〉 (t = 0) is thus P |χd〉/〈χd |P |χd〉, with P the projector onto the subspace. The
solution for the time-dependent state is now described in detail.

4.2. Exact solution of the time-dependent Schrödinger equation

The projector P onto the eigensubspace of bound states is

P =
Nb∑
u=1

|ψu〉〈ψu| (21)

with the orthonormal eigenstates |ψu〉 of the Hamiltonian H given by equation (11). In
equation (21), the index of summation runs over Nb (�N) values, the number of bound states
of H . The projector P is Hermitian:

P = P † = P 2.

P |χd〉 denotes the projection of the normalized one-centre state |χd〉 onto the subspace of
bound states of the total Hamiltonian H, and the initial state |ϕd〉 is P |χd〉 normalized to unity:

‖P |χd〉‖2 = 〈χd |P |χd〉 =
Nb∑
u=1

|〈ψu|χd〉|2 � 1 |ϕd〉 = P |χd〉√〈χd |P |χd〉
.

The inequality in the line above is the Bessel inequality. The computation of P |χd〉 can be
achieved from knowledge of the 〈ψu|χd〉 which requires knowledge of 〈ξi |G0(zu)G0(z0)|ξd〉.
These matrix elements can be obtained from equations (12), (13).

The time-dependent normalized state is then given by

|ϕd(t)〉 = exp(−iHt)|ϕd〉

=
∑Nb

u=1 exp(−izut)|ψu〉〈ψu|χd〉√〈χd |P |χd〉
(22)

and its wavefunction then follows from equation (18). It is clear from equation (22) that
time evolution requires accurate determination of the eigenenergies zu, especially when the
difference between neighbouring energies is small, a characteristic feature of quasicrystalline
systems.

It can be noted that equations (11)–(13) can be used to test the numerical accuracy of the
computed matrix elements by testing the orthonormality relations (19).
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Clearly 〈ϕk(t)|ϕk(t)〉 = 1 since each |ϕk(t)〉 is normalized by the definition for t = 0 and
remains normalized for all times t since H is Hermitian. The Schwarz inequality then yields
|〈ϕj (t)|ϕk(t)〉| � 1. For j �= k, 〈ϕj (t)|ϕk(t)〉 is also time independent but is not equal to zero.
Nevertheless, as |ϕk(0)〉 is localized in the vicinity of the centre ak , the overlap 〈ϕj (t)|ϕk(t)〉
decreases exponentially as the distance djk increases. Let us now introduce a matrix 
 of
order N whose matrix elements are defined by


jk = 〈ϕj (0)|ϕk(0)〉 (23)

= 〈ϕj (t)|ϕk(t)〉. (24)

This matrix has unity on the main diagonal, and the Schwarz inequality ensures |
jk| � 1.
Let us define the ratio R by

R =
∑

j,k |
jk|2
N

. (25)

If R 	 1, and if Nb = N , the vectors |ϕk(t)〉 (k = 1, . . . , N) provide, for each time t, an
approximate orthonormal basis for the subspace of bound states. Whether the ratio R is close
to unity or not, the subsequent analysis remains valid.

A very convenient tool for visualizing wave packet time evolution, especially for long
times and a complex geometry in three-dimensional space, is to plot for each centre j the
square modulus matrix elements

Pj,d(t) ≡ |〈ϕj (0)|ϕd(t)〉|2 =
∣∣∣∣∣
∑Nb

u=1 exp(−izut)〈χj |ψu〉〈ψu|χd〉√〈χj |P |χj 〉〈χd |P |χd〉

∣∣∣∣∣
2

. (26)

The left-hand side clearly is, for each time t, a measure of the overlap of the time-dependent
wave packet |ϕd(t)〉 with a fictitious wave packet |ϕj (0)〉 which would be an initial wave
packet centred at the centre j at time t. If R 	 1, this measure can be interpreted, loosely
speaking, as the probability that the time-dependent state |ϕd(t)〉 is to be found near the centre
aj , and

∑N
j=1Pj,d(t) 	 1. If R is significantly greater than unity, the measures Pj,d(t) are not

normalized. The right-hand side of equation (26) can be computed very rapidly according to
the previous results.

As the modulus of a sum is smaller than or equal to the sum of moduli, one has

Pj,d(t) � 1

〈χj |P |χj 〉〈χd |P |χd〉

[
Nb∑
u=1

|〈χj |ψu〉〈ψu|χd〉|
]2

≡ Mj,d . (27)

The upper bounds Mj,d are time independent, satisfy Mj,d = Md,j and will provide
an extremely useful tool for subsequent analysis of time evolution on quasicrystalline
systems. The matrix M will be called the majorant matrix. The Schwarz inequality∑

u aubu �
√∑

u |au|2
√∑

u |bu|2 ensures that Mj,d � 1, and of course Mj,j = 1.

5. Some applications

From now on, the values of the strength parameter λ and of the range parameter r are
λ = −0.398 909 au and r = 1.817 6943 au. These values are not critical, but this
choice corresponds to the choices previously made [18–20] and was originally motivated
for reproducing the band structure of lithium [19]. Moreover, in the applications presented
below, the parameters r, λ and the geometric configuration parameters aj are such that the
system has indeed a maximum number of bound states, Nb = N .
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5.1. Truncated periodic linear chain

As in [19], we take the common intercentre distance d = djk = 6.5183
√

3
2 	 5.645 au. The

number of centres is N = 14. The time evolution of the modulus of the wavefunction on the
chain axis is reported in figure 1. We take the departure index d = 1. This corresponds to a
wave packet initially centred on the left extremity of the chain at time t = 0. The maximum
time, t = 431 au, corresponds to a maximum value of the modulus of the wavefunction on
the right extremity of the chain. This interval of time is subdivided into ten equidistant points
(t = k 431/9, k = 0, 1, . . . , 9). One sees in figure 1 a regular evolution from left to right with
a final concentration on the right extremity.

As R 	 1.03, (see equation (25)), the vectors |ϕj (0)〉(j = 1, . . . , N) provide an
approximate orthonormal basis for the subspace of bound states, and

∑N
j=1 Pj,d(t) is close to

unity.
In order to better appreciate the time evolution in a continuous way, figure 2 reports the

modulus of the overlap coefficients, Pj,1(t) (see equation (26)) over the same time interval.
The first overlap P1,1(t) (the thinner curve) begins by decreasing with time, and for j �= 1
(other curves) each Pj,1(t) first increases with time t, in the order of increasing j values. In
figure 2, the sum

∑14
j=1 Pj,1(t), slightly above unity, has small oscillations that remain invisible

at the scale of the graph.
Figure 3 reports the overlap coefficient P1,1(t), equation (26), for a longer time interval

(t = 3000), together with the sum of all Pj,1(t) (thick dashed line). The local maxima of
P1,1(t) nicely illustrate what has been called quantum wave packet revival, a phenomenon
that occurs in many contexts [15, 16]. None of the curves is periodic with respect to time t.
It is recalled that the wave packet must remain in the vicinity of the chain because we consider
bound states in this paper. In the theory of revival phenomena, one typically expands the
energy eigenvalues (supposed here to depend on one quantum number only), in a Taylor series
around a mean energy level, see e.g. [13, 15]. The quadratic term leads to what has been called
perfect revivals. It is emphasized that throughout the present work, the quantum revivals are
not perfect because the spectrum is not quadratic in the quantum number. Finally, the majorant
matrix M is

1.0 0.7 0.6 0.7 0.6 0.6 0.7 0.7 0.6 0.6 0.7 0.6 0.7 1.0
0.7 1.0 0.6 0.7 0.6 0.6 0.7 0.7 0.6 0.6 0.7 0.6 1.0 0.7
0.6 0.6 1.0 0.6 0.5 0.8 0.6 0.6 0.8 0.5 0.6 1.0 0.6 0.6
0.7 0.7 0.6 1.0 0.6 0.6 0.7 0.7 0.6 0.6 1.0 0.6 0.7 0.7
0.6 0.6 0.5 0.6 1.0 0.5 0.6 0.6 0.5 1.0 0.6 0.5 0.6 0.6
0.6 0.6 0.8 0.6 0.5 1.0 0.6 0.6 1.0 0.5 0.6 0.8 0.6 0.6
0.7 0.7 0.6 0.7 0.6 0.6 1.0 1.0 0.6 0.6 0.7 0.6 0.7 0.7
0.7 0.7 0.6 0.7 0.6 0.6 1.0 1.0 0.6 0.6 0.7 0.6 0.7 0.7
0.6 0.6 0.8 0.6 0.5 1.0 0.6 0.6 1.0 0.5 0.6 0.8 0.6 0.6
0.6 0.6 0.5 0.6 1.0 0.5 0.6 0.6 0.5 1.0 0.6 0.5 0.6 0.6
0.7 0.7 0.6 1.0 0.6 0.6 0.7 0.7 0.6 0.6 1.0 0.6 0.7 0.7
0.6 0.6 1.0 0.6 0.5 0.8 0.6 0.6 0.8 0.5 0.6 1.0 0.6 0.6
0.7 1.0 0.6 0.7 0.6 0.6 0.7 0.7 0.6 0.6 0.7 0.6 1.0 0.7
1.0 0.7 0.6 0.7 0.6 0.6 0.7 0.7 0.6 0.6 0.7 0.6 0.7 1.0

(28)

The column d concerns the time evolution of a wave packet initially at the centre d. In
that column, the number at line j gives a majorant for the overlap of this time-dependent wave
packet with a fictitious time-independent wave packet which would remains at centre j for
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Figure 1. Abscissa: chain axis x. Ordinate: |〈x, y = 0, z = 0|ψ〉|, the modulus of the normalized
wavefunction on the chain axis. The intersections of the numbered vertical lines with the abscissa
indicate the centres aj .
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Figure 2. Abscissa: time t. Fourteen full line curves: Pj,1(t) (see equation 26), 1 � j � 14,
with thickness and grey level increasing with j . The thick dashed line curve corresponding to∑14

j=1Pj,1(t) remains in the vicinity of unity.
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Figure 3. Abscissa: time t. Full line curves: P1,1(t) (see equation (26)). The thick dashed line
curve corresponding to

∑14
j=1Pj,1(t) remains in the vicinity of unity.

all times. For example, M3,1, the element at line 3 and column 1, is equal to 0.6 and this means
that for a wave packet initially at the centre 1, the overlap P3,1(t) will remain smaller than or
equal to 0.6 for all time values. The symmetry with respect to the second diagonal reflects
the symmetry of the chain with respect to its middle. The interest in this matrix will come
from the comparison with the analogue matrix for a Fibonacci chain and a Penrose structure
in subsections 5.3, 5.4.

5.2. Truncated periodic linear chain with a defect

We consider the previous chain of subsection 5.1, and multiply the interval between centres 7
and 8 (see figure 1) by 7/5. This is the only change. One has R 	 1.03. Figure 4 is the exact
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Figure 4. As figure 2, but for a chain with an interval between the centres 7 and 8 multiplied by
7/5. See text.
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Figure 5. Chain with an interval between centres 7 and 8 equal to 7d/5. See text. Abscissa:
time t. Full line curves: P1,14(t) (see equation (26)). The thick line curve corresponding to∑14

j=1Pj,1(t) remains in the vicinity of unity.

analogue of figure 2. It is seen that, over the same time interval, the coefficients Pj,1(t) remain
negligible for j � 8. The wave packet is thus reflected near centre a7 and the coefficient
P7,1(t) presents a maximum approximately equal to 0.8. The first revival of the coefficient
P1,1(t) becomes appreciable at the end of the time interval (the right extremity of figure 4).
After sufficiently long times, however, the wave packet takes significant values inside the right
second half part of the chain, as shown in figure 5, where the last coefficient P14,1(t) is plotted
up to time 3000, together with the sum

∑14
j=1 Pj,1(t).
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Figure 6. The 14 centres of the truncated Fibonacci chain are at the intersection of the vertical
lines with the abscissa.

We finally consider the previous chain of subsection 5.1, and multiply the interval between
centres 7 and 8 (see figure 1) by 3/5. This is the only change. One has R 	 1.05. The
difference now is that the coefficient P7,1(t) remains negligible, the wave packet being
reflected near centre a6. As a result, the reflection takes place slightly before the one in
figure 4. The first revival of the coefficient P1,1(t) also takes place before the one of figure 4.
The upper bounds M7,1 and M8,1 have small values, about 0.0168. Moreover, all the upper
bounds Mj /∈{7,8},7 and Mj /∈{7,8},8 pertaining to an initial wave packet position at centres 7 and
8 respectively also remain smaller than 0.0715, whereas M7,7,M8,7,M7,8,M8,8 are equal to
unity. The interpretation is clear: if the starting position of the wave packet is at centres 7 or 8,

the wave packet oscillates between these two neighbouring centres, forming a (non-stationary)
quasi-bounded state near the two centres. On the other hand, it is found that, over the same
time interval, the coefficients Pj,1(t) remain negligible for j � 7. As noted previously,
the wave packet is thus reflected near the centre a6 and the coefficient P6,1(t) presents a
maximum slightly greater than 0.8. After sufficiently long times, however, the wave packet
takes significant values inside the right second half part of the chain.

It is natural that the reflection takes place near the centre 7 when the distance between
centres 7 and 8 is expanded, but why does the reflection take place near centre 6 when the
distance between centres 7 and 8 is reduced? The reason is that the ground state wavefunction,
i.e. the eigenfunction of the Hamiltonian associated with the lowest energy eigenvalue, is then
mainly concentrated near the two less distant centres 7 and 8. As a result of orthogonality
of eigenfunctions associated with different energy eigenvalues, the initial wave packet has a
small coefficient 〈ψu|χ1〉 (see equation (22)) with |ψu〉 denoting the ground state.

5.3. Truncated Fibonacci chain

The two intercentre distances have been chosen so as the number of centres per unit length is
the same as for the previous truncated periodic linear chain in the limit of infinite number of
centres. More specifically the large intercentre distance is djk = 6.5183

√
3

2 τ τ+1
τ+2 	 6.6093 au,

and the short intercentre distance is djk = 6.5183
√

3
2

τ+1
τ+2 	 4.0848 au, where τ denotes the

golden ratio: τ = (1 +
√

5)/2. Again, these are the values used in [18]. The number of centres
is N = 14 as for the previous case in the truncated periodic linear chain, and the centres are at
the intersections of vertical lines with the abscissa axis in figure 6. One has R 	 1.07.
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Figure 7. Abscissa: time t. Full line curve starting at unity: P1,1(t). Full thick line curve in phase
opposition with the curve P1,1(t): P4,1(t). Dashed line curve starting at zero: P9,1(t). Thick
dashed line curve in phase opposition with P9,1(t): P12,1(t). Dashed line curve remaining in the
vicinity of unity: the sum over the previous four curves.

The majorant matrix M (each round to the first non-zero digits)

1.0 0.05 0.05 1.0 0.002 0.02 0.02 0.003 0.9 0.02 0.02 0.9 0.003 0.02
0.05 1.0 1.0 0.06 0.02 0.03 0.06 0.05 0.02 0.08 0.08 0.02 0.05 0.05
0.05 1.0 1.0 0.06 0.02 0.03 0.05 0.05 0.02 0.08 0.08 0.02 0.05 0.05
1.0 0.06 0.06 1.0 0.02 0.05 0.05 0.02 0.9 0.02 0.02 0.8 0.003 0.02
0.002 0.02 0.02 0.02 1.0 1.0 1.0 1.0 0.02 0.05 0.05 0.003 0.01 0.01
0.02 0.03 0.03 0.05 1.0 1.0 1.0 1.0 0.05 0.06 0.06 0.02 0.01 0.02
0.02 0.06 0.05 0.05 1.0 1.0 1.0 1.0 0.05 0.02 0.02 0.02 0.001 0.002
0.003 0.05 0.05 0.02 1.0 1.0 1.0 1.0 0.02 0.02 0.02 0.002 0.002 0.002
0.9 0.02 0.02 0.9 0.02 0.05 0.05 0.02 1.0 0.06 0.06 1.0 0.02 0.05
0.02 0.08 0.08 0.02 0.05 0.06 0.02 0.02 0.06 1.0 1.0 0.07 0.8 0.8
0.02 0.08 0.08 0.02 0.05 0.06 0.02 0.02 0.06 1.0 1.0 0.07 0.8 0.8
0.9 0.02 0.02 0.8 0.003 0.02 0.02 0.002 1.0 0.07 0.07 1.0 0.02 0.05
0.003 0.05 0.05 0.003 0.01 0.01 0.001 0.002 0.02 0.8 0.8 0.02 1.0 1.0
0.02 0.05 0.05 0.02 0.01 0.02 0.002 0.002 0.05 0.8 0.8 0.05 1.0 1.0

(29)
is in sharp contrast with the ones relative to the periodic case (equation (28)). The situation is
thus quite different. Let us consider for example the majorants Mj,1, i.e. the first column for a
wave packet initially at the centre 1. It is seen from the first column of upper bounds that the
overlap coefficients Pj,1(t) are negligible, except for centres 1, 4, 9, 12. The interpretation is
easy if one looks at figure 6: the wave packet can take significant values only at the centres
which do not have a closest neighbour at a short intercentre distance, that is to say at centres
with the same surroundings. Figure 7 shows that the wave packet indeed takes significant
values at these four centres, and it has to be noted that the transport is much slower than for
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Figure 8. Truncated Penrose tiling with 16 centres.

the periodic case (the interval of times in figure 7 is 0 � t � 30 000). The very rapid small
oscillations in the curves of figure 7 are due to the small coupling with the ten other centres.

If we now look at the second column of the majorant matrix, equation (29), we
see that a wave packet starting at centre 2 will oscillate between this centre and the
neighbouring centre 3, and will remain confined with essentially no spreading over the other
centres.

The time evolution for a wave packet initially at centre 5 can also be predicted from the
fifth column of matrix (29): it can take significant values only at centres 5, 6, 7, 8. It is also
clear from this matrix that a wave packet initially at centre 11 can take significant values only
at centres 10, 11, 13, 14.

The facts described in the last two paragraphs can be understood from knowledge of
the stationary wavefunctions, i.e. eigenfunctions of the Hamiltonian. Some graphs of these
wavefunctions can be found in figure 6(b) of [18]. These eigenfunctions are site selective,
which means in particular that a wavefunction with significant values at a centre with a
neighbour at short distance will not take significant values at a centre with left and right
neighbours both at large distance and vice versa. This explains for example why a wave
packet initially at centre 11 can take significant values only at centres 10, 11, 13, 14 but
not at centre 12. Now the ground state wavefunction is mainly concentrated in the closest
two short intervals, i.e. between centres 5 and 6, and between centres 7 and 8. Due to
orthogonality between eigenstates of different energy, a wave packet initially at centre 2 has a
small coefficient 〈ψu|χ2〉 (see equation 22) with |ψu〉 denoting the ground state, and therefore
will oscillate between centres 2 and 3.

5.4. Truncated Penrose structure

A truncated Penrose tiling with 16 centres is reported in figure 8. The edges of rhombi are
plotted for a better visualization, but only the vertex positions are relevant. This configuration
is symmetric relative to a vertical axis through vertices 7, 8, 9, 10. The common edge length
of the two rhombi is 6.0816 au, as in [17, 20]. One has R 	 1.111 39. A systematic
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Figure 9. Truncated Penrose tiling with 16 centres. Abscissa: time t. Sixteen full line curves:
Pj,7(t) (see equation (26)), 1 � j � 16, with thickness and grey level increasing with j . In
particular, the full line starting at unity is P7,7(t), and in phase opposition is P8,7(t). The thick
dashed line curve remaining in the vicinity of 1.15 :

∑16
j=1Pj,7(t).

study of time evolution of wave packets on a Penrose structure is beyond the scope of
the present work. We only give the majorant matrix for the truncated Penrose tiling of
figure 8.

1.0 0.3 0.9 0.06 0.4 0.3 0.01 0.01 0.08 0.1 0.3 0.9 0.06 0.4 1.0 0.3

0.3 1.0 0.2 0.6 0.4 1.0 0.06 0.06 0.2 0.05 1.0 0.2 0.6 0.4 0.3 1.0

0.9 0.2 1.0 0.02 0.3 0.2 0.07 0.06 0.03 0.09 0.2 1.0 0.02 0.3 0.9 0.2

0.06 0.6 0.02 1.0 0.04 0.6 0.05 0.06 0.02 0.004 0.6 0.02 1.0 0.04 0.06 0.6

0.4 0.4 0.3 0.04 1.0 0.4 0.007 0.006 0.2 0.4 0.4 0.3 0.04 1.0 0.4 0.4

0.3 1.0 0.2 0.6 0.4 1.0 0.03 0.03 0.3 0.05 1.0 0.2 0.6 0.4 0.3 1.0

0.01 0.06 0.07 0.05 0.007 0.03 1.0 1.0 0.03 0.009 0.03 0.07 0.05 0.007 0.01 0.06

0.01 0.06 0.06 0.06 0.006 0.03 1.0 1.0 0.02 0.007 0.03 0.06 0.06 0.006 0.01 0.06

0.08 0.2 0.03 0.02 0.2 0.3 0.03 0.02 1.0 0.4 0.3 0.03 0.02 0.2 0.08 0.2

0.1 0.05 0.09 0.004 0.4 0.05 0.009 0.007 0.4 1.0 0.05 0.09 0.004 0.4 0.1 0.05

0.3 1.0 0.2 0.6 0.4 1.0 0.03 0.03 0.3 0.05 1.0 0.2 0.6 0.4 0.3 1.0

0.9 0.2 1.0 0.02 0.3 0.2 0.07 0.06 0.03 0.09 0.2 1.0 0.02 0.3 0.9 0.2

0.06 0.6 0.02 1.0 0.04 0.6 0.05 0.06 0.02 0.004 0.6 0.02 1.0 0.04 0.06 0.6

0.4 0.4 0.3 0.04 1.0 0.4 0.007 0.006 0.2 0.4 0.4 0.3 0.04 1.0 0.4 0.4

1.0 0.3 0.9 0.06 0.4 0.3 0.01 0.01 0.08 0.1 0.3 0.9 0.06 0.4 1.0 0.3

0.3 1.0 0.2 0.6 0.4 1.0 0.06 0.06 0.2 0.05 1.0 0.2 0.6 0.4 0.3 1.0

(30)

As can be seen from this matrix and from figure 8, the time evolution is clearly site
selective. Consider for example a wave packet initially at centre 7 (column 7). The seventh
column of the above matrix tells us that the wave packet will remain confined between centres
7 and 8. The oscillations between these centres are rapid as shown in figure 9, where the time
interval is 0 � t � 50. It should be noted that initially, P8,7(0) has a value of about 0.15.
Consider then a wave packet initially at centre 4. The fourth column of matrix (30) tells us
that the wave packet can take significant values only at centres 2, 4, 6, 11, 13, 16, i.e. at the
centres located on two adjacent short diagonals of thin rhombi.
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6. Concluding remarks

The present work first provides a model for the general study of time evolution of wave
packets bound in nanosystems of arbitrary geometry in three-dimensional space with little
numerical effort. For each geometric configuration, the eigenvalues of the Hamiltonian have
to be computed accurately since precise eigenvalues are necessary for accurate eigenvector
determination. The difference between neighbouring eigenvalues is also important for time
evolution, and these differences can be quite small in cases of quasicrystals whose spectra are
of fractal nature. Secondly, the present work provides for this model methods and tools for
analysing wave packet time evolution. These methods and tools are particularly suitable for a
systematic study of the influence of the starting position of the wave packet.

The phenomena described in this paper may be physically relevant to experiments
involving scanning tunnelling microscopy, or ultrashort laser pulses. They may be of interest
for nanosystems on a surface or for macromolecules. In any case, even if not directly
accessible to experiments by present day technology, they should be born in mind for theoretical
descriptions of transport phenomena.

The interpretation of many non-intuitive effects has been made in terms of eigenfunctions
of the Hamiltonian in subsections 5.2 and 5.3. The key point is that orthogonality between
eigenfunctions pertaining to different energy eigenvalues is achieved differently in (truncated)
periodic systems and in (truncated) quasiperiodic systems. In truncated periodic systems,
each eigenfunction covers the whole range of the system, and orthogonality is achieved by
oscillations. In truncated quasiperiodic systems, the eigenfunctions are site selective [18, 20]
and some may be confined. (No confinement for infinite quasiperiodic systems.) Orthogonality
may then be achieved not only by oscillations, but also simply by main localization in different
regions. Once the stationary wavefunctions have been computed for a particular geometric
configuration of the system, it is rather easy to explain a posteriori the overall aspect of these
functions, starting from the one of lowest energy. It is however not always easy to make
predictions before doing computations. Hence the interest in a solvable model.

Appendix A. Computation of a matrix element

Following the method described in the appendix of [18], one first obtains

〈ξj |G0(z2)G0(z1)|ξk〉 = (2m)2 r

djk

1

π

∫ ∞

−∞
dp

sin2(pr)(
p2 − p2

2

)(
p2 − p2

1

) sin(pdjk)

p

For the case djk > 2r , one proceeds as in the appendix of [18] by expressing sin(pdjk)

as the sum of two exponentials and closing the contour by an infinite semi-circle in the upper
half plane for the term exp(ipdjk) and in the lower half plane for the term exp(−ipdjk).

The case djk < 2r is slightly more complicated. One first expands the square sine in
terms of exponentials:

〈ξj |G0(z2)G0(z1)|ξk〉 = −2m2 r

djk

1

2π

∫ ∞

−∞
dp

1(
p2 − p2

2

)(
p2 − p2

1

) [exp(i2pr)

+ exp(−i2pr) − 2]
sin(pdjk)

p
.

The term involving exp(i2pr)
sin(pdjk)

p
can be evaluated by closing the contour by an infinite

semi-circle in the upper half plane. The term involving exp(−i2pr)
sin(pdjk)

p
can be evaluated

by closing the contour by an infinite semi-circle in the lower half plane. There remains the
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term involving −2 sin(pdjk)

p
. This quotient is regular at p = 0, but when expressing sin(pdjk)

as the sum of two exponentials, we obtained two terms singular at p = 0. A well-known
method consists in an infinitesimal modification of the contour in order to avoid the point
p = 0 slightly below or above. This does not change the result since sin(pdjk)

p
is continuous at

p = 0. Application of the residue theorem finally leads to equation (13).
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